3.1568 \(\int \frac{(a^2+2 a b x+b^2 x^2)^{3/2}}{(d+e x)^9} \, dx\)

Optimal. Leaf size=200 \[ -\frac{b^3 \sqrt{a^2+2 a b x+b^2 x^2}}{5 e^4 (a+b x) (d+e x)^5}+\frac{b^2 \sqrt{a^2+2 a b x+b^2 x^2} (b d-a e)}{2 e^4 (a+b x) (d+e x)^6}-\frac{3 b \sqrt{a^2+2 a b x+b^2 x^2} (b d-a e)^2}{7 e^4 (a+b x) (d+e x)^7}+\frac{\sqrt{a^2+2 a b x+b^2 x^2} (b d-a e)^3}{8 e^4 (a+b x) (d+e x)^8} \]

[Out]

((b*d - a*e)^3*Sqrt[a^2 + 2*a*b*x + b^2*x^2])/(8*e^4*(a + b*x)*(d + e*x)^8) - (3*b*(b*d - a*e)^2*Sqrt[a^2 + 2*
a*b*x + b^2*x^2])/(7*e^4*(a + b*x)*(d + e*x)^7) + (b^2*(b*d - a*e)*Sqrt[a^2 + 2*a*b*x + b^2*x^2])/(2*e^4*(a +
b*x)*(d + e*x)^6) - (b^3*Sqrt[a^2 + 2*a*b*x + b^2*x^2])/(5*e^4*(a + b*x)*(d + e*x)^5)

________________________________________________________________________________________

Rubi [A]  time = 0.0868989, antiderivative size = 200, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 2, integrand size = 28, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.071, Rules used = {646, 43} \[ -\frac{b^3 \sqrt{a^2+2 a b x+b^2 x^2}}{5 e^4 (a+b x) (d+e x)^5}+\frac{b^2 \sqrt{a^2+2 a b x+b^2 x^2} (b d-a e)}{2 e^4 (a+b x) (d+e x)^6}-\frac{3 b \sqrt{a^2+2 a b x+b^2 x^2} (b d-a e)^2}{7 e^4 (a+b x) (d+e x)^7}+\frac{\sqrt{a^2+2 a b x+b^2 x^2} (b d-a e)^3}{8 e^4 (a+b x) (d+e x)^8} \]

Antiderivative was successfully verified.

[In]

Int[(a^2 + 2*a*b*x + b^2*x^2)^(3/2)/(d + e*x)^9,x]

[Out]

((b*d - a*e)^3*Sqrt[a^2 + 2*a*b*x + b^2*x^2])/(8*e^4*(a + b*x)*(d + e*x)^8) - (3*b*(b*d - a*e)^2*Sqrt[a^2 + 2*
a*b*x + b^2*x^2])/(7*e^4*(a + b*x)*(d + e*x)^7) + (b^2*(b*d - a*e)*Sqrt[a^2 + 2*a*b*x + b^2*x^2])/(2*e^4*(a +
b*x)*(d + e*x)^6) - (b^3*Sqrt[a^2 + 2*a*b*x + b^2*x^2])/(5*e^4*(a + b*x)*(d + e*x)^5)

Rule 646

Int[((d_.) + (e_.)*(x_))^(m_)*((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Dist[(a + b*x + c*x^2)^Fra
cPart[p]/(c^IntPart[p]*(b/2 + c*x)^(2*FracPart[p])), Int[(d + e*x)^m*(b/2 + c*x)^(2*p), x], x] /; FreeQ[{a, b,
 c, d, e, m, p}, x] && EqQ[b^2 - 4*a*c, 0] &&  !IntegerQ[p] && NeQ[2*c*d - b*e, 0]

Rule 43

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])

Rubi steps

\begin{align*} \int \frac{\left (a^2+2 a b x+b^2 x^2\right )^{3/2}}{(d+e x)^9} \, dx &=\frac{\sqrt{a^2+2 a b x+b^2 x^2} \int \frac{\left (a b+b^2 x\right )^3}{(d+e x)^9} \, dx}{b^2 \left (a b+b^2 x\right )}\\ &=\frac{\sqrt{a^2+2 a b x+b^2 x^2} \int \left (-\frac{b^3 (b d-a e)^3}{e^3 (d+e x)^9}+\frac{3 b^4 (b d-a e)^2}{e^3 (d+e x)^8}-\frac{3 b^5 (b d-a e)}{e^3 (d+e x)^7}+\frac{b^6}{e^3 (d+e x)^6}\right ) \, dx}{b^2 \left (a b+b^2 x\right )}\\ &=\frac{(b d-a e)^3 \sqrt{a^2+2 a b x+b^2 x^2}}{8 e^4 (a+b x) (d+e x)^8}-\frac{3 b (b d-a e)^2 \sqrt{a^2+2 a b x+b^2 x^2}}{7 e^4 (a+b x) (d+e x)^7}+\frac{b^2 (b d-a e) \sqrt{a^2+2 a b x+b^2 x^2}}{2 e^4 (a+b x) (d+e x)^6}-\frac{b^3 \sqrt{a^2+2 a b x+b^2 x^2}}{5 e^4 (a+b x) (d+e x)^5}\\ \end{align*}

Mathematica [A]  time = 0.046937, size = 112, normalized size = 0.56 \[ -\frac{\sqrt{(a+b x)^2} \left (15 a^2 b e^2 (d+8 e x)+35 a^3 e^3+5 a b^2 e \left (d^2+8 d e x+28 e^2 x^2\right )+b^3 \left (8 d^2 e x+d^3+28 d e^2 x^2+56 e^3 x^3\right )\right )}{280 e^4 (a+b x) (d+e x)^8} \]

Antiderivative was successfully verified.

[In]

Integrate[(a^2 + 2*a*b*x + b^2*x^2)^(3/2)/(d + e*x)^9,x]

[Out]

-(Sqrt[(a + b*x)^2]*(35*a^3*e^3 + 15*a^2*b*e^2*(d + 8*e*x) + 5*a*b^2*e*(d^2 + 8*d*e*x + 28*e^2*x^2) + b^3*(d^3
 + 8*d^2*e*x + 28*d*e^2*x^2 + 56*e^3*x^3)))/(280*e^4*(a + b*x)*(d + e*x)^8)

________________________________________________________________________________________

Maple [A]  time = 0.155, size = 131, normalized size = 0.7 \begin{align*} -{\frac{56\,{x}^{3}{b}^{3}{e}^{3}+140\,{x}^{2}a{b}^{2}{e}^{3}+28\,{x}^{2}{b}^{3}d{e}^{2}+120\,x{a}^{2}b{e}^{3}+40\,xa{b}^{2}d{e}^{2}+8\,x{b}^{3}{d}^{2}e+35\,{a}^{3}{e}^{3}+15\,d{e}^{2}{a}^{2}b+5\,a{b}^{2}{d}^{2}e+{b}^{3}{d}^{3}}{280\,{e}^{4} \left ( ex+d \right ) ^{8} \left ( bx+a \right ) ^{3}} \left ( \left ( bx+a \right ) ^{2} \right ) ^{{\frac{3}{2}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b^2*x^2+2*a*b*x+a^2)^(3/2)/(e*x+d)^9,x)

[Out]

-1/280/e^4*(56*b^3*e^3*x^3+140*a*b^2*e^3*x^2+28*b^3*d*e^2*x^2+120*a^2*b*e^3*x+40*a*b^2*d*e^2*x+8*b^3*d^2*e*x+3
5*a^3*e^3+15*a^2*b*d*e^2+5*a*b^2*d^2*e+b^3*d^3)*((b*x+a)^2)^(3/2)/(e*x+d)^8/(b*x+a)^3

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b^2*x^2+2*a*b*x+a^2)^(3/2)/(e*x+d)^9,x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 1.84164, size = 406, normalized size = 2.03 \begin{align*} -\frac{56 \, b^{3} e^{3} x^{3} + b^{3} d^{3} + 5 \, a b^{2} d^{2} e + 15 \, a^{2} b d e^{2} + 35 \, a^{3} e^{3} + 28 \,{\left (b^{3} d e^{2} + 5 \, a b^{2} e^{3}\right )} x^{2} + 8 \,{\left (b^{3} d^{2} e + 5 \, a b^{2} d e^{2} + 15 \, a^{2} b e^{3}\right )} x}{280 \,{\left (e^{12} x^{8} + 8 \, d e^{11} x^{7} + 28 \, d^{2} e^{10} x^{6} + 56 \, d^{3} e^{9} x^{5} + 70 \, d^{4} e^{8} x^{4} + 56 \, d^{5} e^{7} x^{3} + 28 \, d^{6} e^{6} x^{2} + 8 \, d^{7} e^{5} x + d^{8} e^{4}\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b^2*x^2+2*a*b*x+a^2)^(3/2)/(e*x+d)^9,x, algorithm="fricas")

[Out]

-1/280*(56*b^3*e^3*x^3 + b^3*d^3 + 5*a*b^2*d^2*e + 15*a^2*b*d*e^2 + 35*a^3*e^3 + 28*(b^3*d*e^2 + 5*a*b^2*e^3)*
x^2 + 8*(b^3*d^2*e + 5*a*b^2*d*e^2 + 15*a^2*b*e^3)*x)/(e^12*x^8 + 8*d*e^11*x^7 + 28*d^2*e^10*x^6 + 56*d^3*e^9*
x^5 + 70*d^4*e^8*x^4 + 56*d^5*e^7*x^3 + 28*d^6*e^6*x^2 + 8*d^7*e^5*x + d^8*e^4)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b**2*x**2+2*a*b*x+a**2)**(3/2)/(e*x+d)**9,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [A]  time = 1.17929, size = 228, normalized size = 1.14 \begin{align*} -\frac{{\left (56 \, b^{3} x^{3} e^{3} \mathrm{sgn}\left (b x + a\right ) + 28 \, b^{3} d x^{2} e^{2} \mathrm{sgn}\left (b x + a\right ) + 8 \, b^{3} d^{2} x e \mathrm{sgn}\left (b x + a\right ) + b^{3} d^{3} \mathrm{sgn}\left (b x + a\right ) + 140 \, a b^{2} x^{2} e^{3} \mathrm{sgn}\left (b x + a\right ) + 40 \, a b^{2} d x e^{2} \mathrm{sgn}\left (b x + a\right ) + 5 \, a b^{2} d^{2} e \mathrm{sgn}\left (b x + a\right ) + 120 \, a^{2} b x e^{3} \mathrm{sgn}\left (b x + a\right ) + 15 \, a^{2} b d e^{2} \mathrm{sgn}\left (b x + a\right ) + 35 \, a^{3} e^{3} \mathrm{sgn}\left (b x + a\right )\right )} e^{\left (-4\right )}}{280 \,{\left (x e + d\right )}^{8}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b^2*x^2+2*a*b*x+a^2)^(3/2)/(e*x+d)^9,x, algorithm="giac")

[Out]

-1/280*(56*b^3*x^3*e^3*sgn(b*x + a) + 28*b^3*d*x^2*e^2*sgn(b*x + a) + 8*b^3*d^2*x*e*sgn(b*x + a) + b^3*d^3*sgn
(b*x + a) + 140*a*b^2*x^2*e^3*sgn(b*x + a) + 40*a*b^2*d*x*e^2*sgn(b*x + a) + 5*a*b^2*d^2*e*sgn(b*x + a) + 120*
a^2*b*x*e^3*sgn(b*x + a) + 15*a^2*b*d*e^2*sgn(b*x + a) + 35*a^3*e^3*sgn(b*x + a))*e^(-4)/(x*e + d)^8